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Abstract. The dynamics of a perfect fluid with pressure equal to energy density is 
considered in space-times with planar, pseudoplanar, cylindrical and toroidal symmetries. 
A scheme for obtaining the general exact solution of the field equations is described. It is 
shown that this scheme admits inclusion of additional massless, minimally coupled scalar 
fields and (for planar symmetry) electromagnetic plane waves. Two physical examples are 
discussed: (i) finite perturbations of a static regular cylinder and (ii) waves of finite 
magnitude in a Kasner-like universe. In case (i) it is shown that all physically allowed 
perturbations preserving cylindrical symmetry are of standing-wave type and cannot 
propagate. Thus a perturbed static stiff cylinder cannot radiate the Einstein-Rosen waves. 
In case (ii) it is shown that travelling-wave perturbations obey a sort of momentum- 
conservation law; besides, it is argued that sound perturbations can provide a mechanism for 
fragmentation in a universe filled with stiff matter. 

1. Introduction 

Knowledge of exact solutions of general relativity involving waves within matter is 
highly desirable. Solutions of this type could contribute to our understanding of such 
processes as, e.g., interaction between gravitational waves and matter and radiative 
gravitational collapse. 

Most existing wave solutions describe vacuum or electrovacuum space-times (see 
Zakharov 1972). Problems involving matter are in general very complicated, since one 
has to deal with interaction between the gravitational waves and the sound waves 
excited by them. The simplest case is that of 'stiff matter' (a perfect fluid with equal 
pressure and energy density, p = p ) ,  because in such matter the velocity of sound equals 
that of light. The equation of state p = p corresponds to maximum stiffness compatible 
with causality, and is perhaps a good approximation for supernuclear densities of matter 
(Zeldovich and Novikov 1971, Staniukovich et al 1975). 

In this paper, the dynamics of a p = p fluid is considered in space-times with the line 
element 

dS2=e2' dT2-eZA dR2-aZ(e2" d&'+e-'" dq2)  (1) 
where y, A, a and w are functions of R and T. This metric corresponds to pseudoplanar, 
toroidal or cylindrical symmetry when the coordinate lines of 5 a i d  7 (Killing vector 
orbits) are assumed to be, respectively, both open, both cldsed or one open (say, 7) and 
one closed; in the latter case x 2 = 5  is the azimuthal coordinate and x 3 = 7  the 
longitudinal one. The function a(R,  T) may be called a scale factor and w(R, T) an 
anisotropy factor at the (&, 7) surfaces. Planar symmetry is a special case (w = 0) of the 
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pseudoplanar one. The field equations involve only local quantities and may be treated 
for all these symmetries simultaneously. 

In § 2 the problem is treated in its general form. Using the scalar field represen- 
tation (Tabensky andTaub 1973) for stiff matter and the coordinate condition y = A ,  we 
reduce the problem to that for a set of scalar fields in a plane-symmetric space-time, i.e. 
essentially to that solved by Tabensky and Zamorano (1975). Thus a general solution is 
available for stiff matter dynamics in space-times with metric (1). Moreover, one can 
quite easily include an additional massless scalar field (or a multiplet of these), if 
required. 

Then we discuss two physical models with metric (1). Namely, in § 3 we consider 
finite perturbations of a non-singular static cylinder of stiff matter and show that it 
cannot radiate waves of the Einstein-Rosen type. The reason is that travelling waves 
can exist only if there is a singularity at the axis. In § 4, we show that in a Kasner-like 
universe travelling waves cause strong inhomogeneities, and argue that a certain type of 
perturbations (sound ones) can cause fragmentation. 

In appendix 1, it is shown that for w = 0 (planar symmetry condition) the scheme of 
§ 2 admits inclusion of plane electromagnetic waves travelling in the R direction. In 
appendix 2 the problem is discussed in the co-moving frame of reference. It is shown 
that a broad, though not general, class of solutions can be obtained in this frame 
directly. 

Various special cases of the problem have been considered by Tabensky and Taub 
(1973), Letelier (1975), Letelier and Tabensky (1975a, b), Charach and Malin (1979, 
see also references therein). Letelier and Tabensky discussed the general character of 
the singularities emerging in the solutions with stiff matter. Charach and Malin 
considered the solution for gravitational and scalar waves in a matter-free cosmology 
corresponding to our case (i) (see § 2) .  They also treated a high-frequency limit for 
these types of waves. This led to some new solutions describing null fluid flows. 
Evidently the solutions considered here can be modified in the same way, but this goes 
beyond the frame of this paper. Finally, Singh and Yadav (1978) obtained some special 
solutions. for a more general class of space-times (with g 2 3  # 0). 

2. Solution of field equations 

A non-rotating perfect fluid with p = p and 4-velocity U &  can be represented by an 
auxiliary scalar field U (Tabensky and Taub 1973): 

p = p = d”(+,,, U W  = dC”(d“u,,)-”2, V“V,U = 0. ( 2 )  

TL = ( ~ u , u ”  - S L ) p  = 2 ~ , ~ d ”  - SLd“l+,,. 

The fluid energy-momentum tensor becomes that for the scalar field, 

(3) 

Consequently, one can write the field equations of general relativity for metric (1) and 
U = v(R, T )  in the form 

(eY-’uaa‘)’ = (eA-Yaci)’, (4) 
d ’ -  y ’d -Aha’+aDAorA = 0, ( 5 )  

(6) 

(7) (eY-Aa Zo !A)’ = (e^ - Y a  2 ; A ) . ,  

-2h 2 . A  . A  e ( ~ ’ ~ + 2 y ’ a a ’ - a ~ w ’ ~ w ’ ~ ) - e - ~ ~ ( 2 a u + U ~ - 2 j a u  + a  o w ) = o ,  
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Here dots and primes denote a/aT and a/aR respectively and w A are the effective scalar 
fields: 

def def 
w = w ,  w = K ‘ f 2 v .  (8) 

K is the gravitational constant and summation over repeated A is meant. Equations 
(4)-(6) are the Einstein equations (:) + (;), (01) and (i), respectively, while (7) for A = 1 
is the ($)-(’,) Einstein equation and for A = 2 the scalar equation (2). Thus both the fluid 
and the anisotropy factor behave like massless, minimally coupled, source-free scalar 
fields. If one includes additional scalar fields $ A  of the same kind with the Lagrangians 
$A’”$:, then there exist more w A  = K ~ / ’ J I ~ ( A  = 3 , 4 , .  . ,) satisfying equation (7). 

Imposing the coordinate condition y = A ,  one easily solves (4): 

a’ = f ( T +  R )  + g ( T -  R).  (9) 
However, further on one need not deal with this general solution: similarly to the 
famous paper by Einstein and Rosen (1931), one can employy invariance ,.of the 
condition y = A  under transformations (T, R )  + (F, I?) such that T = and R = I?”. 
Consequently, in the three physically different cases when the gradient a,w is timelike, 
spacelike or null?, one can choose the coordinates so that, respectively, (i) a’ = T, (ii) 
U’ = R, and (iii) a’= ( T -  R)’. 

In cases (i) and (ii) the wave equations (7) take the forms 

(i) wtrA = T- ’ (TB~) ‘ ,  (ii) R - ~ ( R ~ ’ ~ ) ’ =  c;jA. (10) 
These equations are solved in terms of zero-order cylindrical functions by standard 
separation of variables or in an integral form (Tabensky and Zamorano 1975). NOW 
equations (5) and (6) express i. and y’ in terms of known functions: 

(9 y’ = 2 TwIAhA,  y = -1 /4T+ T ( h A h A + w ’ A w ’ A ) ,  (11) 

(12) A A  (ii) y = 2RwIAhA, y’=-1/4R + R ( B  d + w ’ ~ o ’ ~ ) .  

These equations are easily integrated, thus completing the solution scheme. The 
integrability condition +’ = y” is satisfied automatically, due to (7). 

In case (i), the scale factor a (which is an analogue of r, the curvature radius of 
coordinate spheres in spherically symmetric space-times) is timelike, and the solution 
may be naturally called a T-region (cosmological type) solution. In case (ii) we have 
then an R-region solution. 

In case (iii), it is convenient to use the null coordinates U = T + R and v = T - R. 
Equations (5) and (6) lead to 

W;;””;;’ = 0, (13) A A  2% = vwv wv , 
where the indices ‘U’ and ‘0’ stand for a/& and a/&, respectively. Thus w A  = w A ( v )  
are arbitrary functions of one variable (equations (7) are now satisfied automatically) 
and 

t The possibility a =constant is rejected since it bringsequation (6) to the form = 0, whence 
u A  =constant. However, if among u A  there is a so-called repulsive scalar field (that with 5 ininus sign before 
the Lagrangian (see e.g. Wagoner 1970)), then in the summation in A the corresponding term is negative and 
equation (6) just connects different u A, each of these obeying the equation w’’ = 6. In this case, the remaining 
unknown function y is found from the equation .i; - y ” +  uA.nut = 0. This is the 6) + (i) Einstein equation, 
which was omitted in the initial set because in the case a #constant it is a consequence of equations (4)-(7). 
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with an arbitrary function Tl(u) which can be absorbed by a coordinate transformation 
U + U '  = f ( u ) .  This is a special solution, which for the case of one scalar field w has been 
discussed in some detail by Tabensky and Zamorano (1975). However, this is a purely 
scalar-vacuum solution: p = dUa+ = 0. 

Thus the general solution for stiff matter reduces to cases (i) and (ii). 
In $0 3 and 4, the general solution is applied to treat finite perturbations of two 

known background configurations characterised by certain w = w o  and (T = ao. The 
perturbations are naturally classified as matter (sound) and gravitational (anisotropy) 
onest; they are characterised, respectively, by a -ao # 0 and w - W O  # 0. These two 
types of perturbations will be considered separately, as they contribute to the function 
y(R, T) quite independently and their joint existence causes no new essential effects. 

3. Finite perturbations of a static cylinder 

A singularity-free, static, cylindrically symmetric solution for stiff matter is obtained 
from § 2 in the special case a2  = R, w = w(R) and (T = (T(T), and may be written in the 
form (Bronnikov 1979, Bronnikov and Kovalchuk 1980) 

ds2=eKpoR2(dT2-dR2)-R2 d t2-dq2,  
1 -~p,,R2 (15) 

w =wo=21n R, a = a. = p;/'T, p = p o e  9 

with p o  = constant. One might expect that, when perturbed, such a configuration should 
radiate. However, it may be shown that perturbations preserving cylindrical symmetry 
(for which a general solution is obtained) are non-radiative if we require that they are 
physically meaningful, that is, preserving regularity at the axis R = 0 and vanishing for 
R + W .  

Physically meaningful, monochromatic, gravitational perturbations with a certain 
frequency k and an amplitude ak can be described by the formulae 

0 = Wo(R) f wk, wk = akJo(kR) sin kT, a k  =constant, (16) 

(17) y = YO(R)+Wk +ia2kkRJo(kR)Jl(kR) cos 2kT, 

2 y , ( R ) = ~ p , R ~ + k  ak dR R[Ji(kR)+J:(kR)], (18) ' J  
where J, are the Bessel functions. Solutions with the cylindrical functions No(kR) and 
Ko(kR) are ruled out by the regularity condition at the axis; those with Io(kR) are 
rejected since they grow exponentially for large R.  For monochromatic sound pertur- 
bations such that (Tk = ( T - ( T ~  = bkJo(kR) sin kT, one obtains again (17) and (18) up to 
the changes 

U k  + K1I2bk, wk * K '"Uk. (19) 

p e2Y=po+2kp~/2bkJocos  k T + k  2 bkJOcos2 2 2  kT-J:sin2 k T  

The amplitude bk is limited by the physical requirement p 2 0. Indeed, the expression 

(20) 

t Scalar fields are not included here, otherwise we ought to consider background scalar fields and scalar 
perturbations, which are, however, decoupled from the w and U fields. Consequently, their contribution to 
the solution is reduced to emergence of new terms in the expression for y(R, T) quite similar to those due to w 
or U. However, the interpretation of the fields i+hA is quite different, as w has the geometrical meaning of an 
anisotropy factor and D represents the fluid. 
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(where J ,  = J,(kR))  can change its sign if bk is too great, and at some values of R and T 
the pressure and density vanish. Perhaps this should be interpreted as possible 
stratification of the cylinder under sufficiently large sound perturbations. A similar 
effect is more important in cosmological-type solutions, see 0 4 .  

As for gravitational perturbations, they preserve the co-moving character of the 
reference frame and their amplitude ak is arbitrary, since p obeys the formula 
p = p o  e-2v and y ( R ,  T )  is finite. 

If there is more than one frequency (w  = X w k ,  (+=Xuk), the expression for y 
involves frequency sums and differences, but it cannot grow with time since there is no 
zero-frequency term in the expression for + in (12). 

To reveal the unphysical nature of escaping wave solutions, let us consider, e.g., a 
monochromatic gravitational wave such that 

w =wo+akJo(kR) cos k T + N o ( k R )  sin kT. ( 2 1 )  

The functions y ( R ,  T )  and p ( R ,  T )  are easily found, as described in 9 2 .  For small R 
their behaviour is dominated by the Neumann function No(kR)  = (2/7r) In kR : 

y = [ ( 1 +  2 7 r - l ~ ~  sin kT)2 - 11 In kR, p = p o  e-2v. ( 2 2 )  

So y takes infinite values of variable sign and the matter has now zero, now infinite 
density at the axis. Thus it is not the perturbations of the matter distribution which are 
the source of the waves, but the pulsating singularity. 

For similar sound perturbations (change w + U, ak + K *"bk), y behaves as before, 
but in the expression for p the main term for small R is negative: 

p = e-2v(u2-d2) = -e-2Y(4b:/7r2R2) sin2 kT 0. ( 2 3 )  

Combinations of waves with different frequencies and phases do not alter the 
situation. 

Thus one should conclude that the configuration (15) is stable under finite cylin- 
drically symmetric perturbations and cannot radiate cylindrical waves of the Einstein- 
Rosen type (probably it can radiate in more complicated modes, destroying the 
symmetry). 

Arbitrary, physically meaningful, cylindrically symmetric perturbations of w and U 

can be expanded into standing waves, and consequently, cannot propagate from the 
place where they have emergedt. Such a situation reminds one of Birkhoff's theorem 
although here a vacuum wave solution exists. 

The reason for non-existence of escaping waves (that such waves would violate the 
regularity condition) seems to be quite general, at least for those equations of state 
which do not admit matter-vacuum interfaces characterised by p = 0 and p # 0. Such 
interfaces involve discontinuities which, in principle, can allow matching of radiative 
external solutions to regular internal ones. As for matter whose density vanishes with 
vanishing pressure, one may suppose that no regular cylindrically symmetric dis- 
tribution of it can be a source of the Einstein-Rosen waves. 

Possibly this conclusion may change if one considers a more general situation, e.g., a 
cylinder of matter surrounded by radiation with non-zero pressure. 

t A superposition of standing waves can, however, describe pulses which come from infinity, are reflected 
from the axis and escape back, like the example of the Einstein-Rosen waves in a vacuum considered by 
Weber and Wheeler (1957). 
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4. Waves in a Kasner-like universe 

A homogeneous expanding cosmological model (Bianchi type I) is obtained from P 2 if 
we put u 2  = T, w = w0(T) and U = uO(T):  

d s 2 =  T26(dT2-dR2)-T1+b d t2-T1-b  dv2,  

w = wo = sb In T, 

b = ~ P o + ( b ~ - 1 ) / 4 ,  b, p o  = constant. 

U = uo = p: l2  In T, p = pOT-2-2b 9 (24) 1 

The cosmology is isotropic in the special case b = 0, ~p~ = f .  

monochromatic travelling gravitational wave one can write: 
Consider perturbations of this model preserving its pseudoplanar symmetry. For a 

w = i b  In T + w k ,  Wk = uk(Jocos kR +Nosin kR), (25) 

y = 6 h  T+bwk(R, T)+Yk(R, T);  (26) 

2ai2yk = kT(NoN1- JIJo) cos 2kR - (NoJ1 + JON1) sin 2kR 

- 4 k R / v + k 2  dTT(Ji+J:+N:+N:), I 
where J, = J,(kT) and N,, = NY(kT).  For the asymptotic k T  >> 1 certain simplifications 
occur: 

wk (2/1~kT)’ /~ak cos(kT - kR - ~ / 4 ) ,  (28) 
a i 2 y k  = -cos(2kT -2kR)+2k(T  - R).  (29) 

For sound waves the same formulae are obtained with the changes w + K ‘l2u, Wk + 
K U k ,  b+2po K , ak+K1/2bk. 

One sees that Yk  contains, along with double harmonic frequency, a term propor- 
tional to R which strongly violates the homogeneity of the universe at any moment of 
time. This violent term appears from a Wronskian of the J and N functions. Thus a 
travelling wave cannot emerge as a finite perturbation in a homogeneous universe, since 
it would require an instantaneous global metric change. The same is valid for a wave 
packet with a spectrum of wk, as the sign of the violent term is common for all 
frequencies and depends only on propagation direction. Frequency sums and 
differences emerging in y(R, T) do not affect this term. One may conclude that there is 
a kind of momentum conservation law for the waves: monochromatic waves can exist in 
pairs propagating in opposite directions with equal kat .  More generally, if the 
perturbation w is expanded in Wk, we should require u tk  dk = 0 if we formally take 
k < 0 for waves travelling in the negative R direction. For joint gravitational and sound 
perturbations this ‘conservation law’ is 

1 /2 1/2 1/2 

It should be added that in model (24) the three Killing directions R, [, 77 are equivalent 
and one can consider waves propagating in any of them with the same results. 

For standing waves the violent term is absent, so they are always allowed as 
perturbations. 

It should be further noted that sound perturbations inevitably cause sign variability 
in p = p .  Indeed, e.g., for a monochromatic standing wave U =PA/’ In T +  
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bkJo(kT) cos kR one obtains 

p = (po/T2)-(2pA'2/T)kb:J1 cos kR + k2b$(J: cos2 kR -J: sin2 kR). (31) 

Apparently the third term having a variable sign is the largest in magnitude for large T. 
(For gravitational perturbations only the first term is present.) However, equations (2) 
lose their meaning if p = d a m , ,  < 0, as the velocity becomes imaginary. Thus the 
solution is valid up to surfaces where p + 0 and the matter velocity tends to that of light. 
In the co-moving reference frame, these surfaces appear as repulsive singularities? 
(goo+ 00, see (A2.3)). 

Probably the occurrence of such surfaces means stratification of the homogeneous 
matter distribution into distinct layers. Moreover, as it has been already mentioned, the 
three spacial directions in model (24) are essentially equivalent and sound pertur- 
bations can arise in any of them, to say nothing of the isotropic case when all 
the directions are equivalent. It seems reasonable to interpret this behaviour 
of the perturbations as a mechanism for fragmentation or clustering. A conclusion is 
that the Kasner-like cosmology is unstable with respect to clustering. The k-depen- 
dence of (31) tells us that this process goes faster for shorter wavelengths. An 
unanswered question remains whether this effect is a special feature of stiff matter 
models or has a more general significance. 
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Appendix 1. Inclusion of electromagnetic plane waves 

Consider electromagnetic waves which could propagate in the R direction' of space- 
time (1). In accordance with the symmetry assumed, we take the non-zero components 
of the 4-potential to be A2(R, T) and A3(R, T). The Maxwell equations take the form 

(eP2"A2)' = (e-'"'A;)', (e2"A3)' = (e2"AL)', (Al .1)  

and are easily solved fort w = 0 (this condition selects plane-symmetric configurations 
among the pseudoplanar ones§; for cylindrical and toroidal symmetries w = 0 is just a 
constraint). Namely, 

A, =F,(T+ R )  + G,(T-R),  a = 2,3.  (A1.2) 

t The surfaces where d'u,, = 0 are singularities of just the matter distribution. It is easily verified that there is 
no space-time singularity and the solution is valid for all R and T >  0 if u is interpreted as a common scalar 
field. 
f The case w = constant is reduced to w = 0 by rescaling q +constant x q. 
5 Existence of non-zero 3-vector quantities in the (6, 7 )  plane, the electric and magnetic vectors ( E  and B ) ,  
does not contradict the space-time planar symmetry. Indeed, this symmetry implies just T: = Ti, whence 
B;+E:=Ez +E: (where E,  and E, are the physical magnetic and electric field components in the 
corresponding direction). Moreover, from the condition TZ3 = 0 it follows that B2B3 = EzE3. Consequently, 
everywhere the E and B vectors are mutually orthogonal and equal in magnitude. To ensure this, one can, 
e.g., direct the q axis at an arbitrary point along B. 
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The electromagnetic energy-momentum tensor has the only non-zero components (we 
put, as before, y = A )  

TE = -Ti = (8m2) - '  e-2y(AhAL+A,A,), To1 = (4.rra2)-'A,AL. (A1.3) 

Now suppose that these electromagnetic waves are added to the physical system 
considered in § 2. One sees that equations (4) ((E) + (i)) and (7)  (scalar equation) remain 
unaltered, and in (5) and (6) ((01) and (i), respectively) there appear right-hand sides 
arising from (A1.3) and consisting of known functions. 

Thus, for w = 0, inclusion of electromagnetic waves does not break the solution 
scheme of § 2, and a general solution to the field equations is obtained in quadratures as 
well. 

Appendix 2. Co-moving frame of reference 

To obtain the solution in the co-moving frame which is most suitable for physical 
interpretation, it is sufficient to transform the results of 8 2, putting T""""'= a ( R ,  T) 
and for cases (i) and (ii) (see (10)): 
(i) dR'""""=(UdR+a'dT)/T, (ii) dR - - (U dR +a' dT)/R.  (A2.1) 

However, for the general form of (T it is difficult to find an explicit form of the 
dependence on T'"""' and RComoV, and it seems reasonable to try to solve the equations 
anew in the co-moving frame. 

If, instead of putting y = A, we choose the coordinates R and T as co-moving ones, 
the set (4)-(7) is modified in the following way: W A I A , 2  disappears; in (6) there emerges 
the right-hand side K P ;  finally, equation (7)  for a is replaced by the 'conservation laws' 

(a2 e^p) '+p(a2eA)) '  = 0, p' + 2py'  = 0, (A2.2) 

which give the expressions for p and eA-": 

eA-' = F(R) /a2f (T) ,  (A2.3) 

where the functions f and F may be chosen arbitrarily to concretise the R and T 
coordinates. Relations (A2.3) decouple the field equations. Indeed, (4) is now a 
nonlinear equation for a (R, T ) .  It is difficult to solve it completely, but if we manage to 
find its special solution, we can further (similarly to § 2) find wA(A # 2) and y from the 
remaining linear equations and A and p from (A2.3). 

In particular, equation (4) has solutions of the form a 2 =  U(T)X(R) .  Indeed, 
choosing F ( R )  = X and f ( T )  = 1/ U (just this choice of F and f gives y = A ) ,  we obtain 
the equation 

(A2.4) 

Now (7) is solved by separation of variables: letting w = &Jk,  wk = &(R)wk(T), we 
obtain 

(A2.5) 

For different variants of solutions of (A2.4), this leads either to equations with constant 
coefficients, or to Bessel or Legendri equations. 

- 2 y  2 
p = P O  e f (T), p o  = constanc; 

x''/X = ~ / u  = B = constant. 

k 

(XsZ')'/Xs2 = (Uw)'/ Uw = K = constant. 
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Thus a broad, though not general, class of solutions is obtained directly in the 
co-moving frame. In particular, for the physical examples of §§ 3 and 4, this leads to a 
complete treatment of purely gravitational perturbations. 
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